1. INTRODUCTION

- This paper: viewing local and long-distance harmony and dissimilation processes as consequences of segmental correspondence—namely, *unstable surface correspondence*.
- This view offers an improved perspective on classic nasal-consonant (NC) patterns that have previously been regulated in Optimality Theory by context-specific markedness constraints.

1.1. Agreement by Correspondence (ABC) as a theory of harmony and disharmony

- Agreement by Correspondence theory (ABC; Hansson 2001; Rose and Walker 2004; Bennett 2013; a.o.): phonological patterns such as harmony and dissimilation arise from the interaction of corresponding surface segments.
- Surface CORR(espondence) relationships are determined by phonological similarity (e.g., participating segments are obstruents, liquids, etc.).

(1) Example: hierarchy of correspondence constraints operating on set of stop consonants (Walker 2000b, Hansson 2001, Rose & Walker 2004, etc.):

<table>
<thead>
<tr>
<th>Most similar</th>
<th>identity</th>
<th>CORR-NN, CORR-DD, CORR-TT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less similar</td>
<td>both voiced stops but can differ in [nas]</td>
<td>CORR-ND</td>
</tr>
<tr>
<td></td>
<td>both oral stops but can differ in [voice]</td>
<td>CORR-TD</td>
</tr>
<tr>
<td>Least similar</td>
<td>all stops but can differ in [nas] and [voice]</td>
<td>CORR-NT</td>
</tr>
</tbody>
</table>

- Harmony: corresponding segments become more similar in order to satisfy featural identity within a correspondence set (IDENT-CC [F]).
- Disharmony: the cost of satisfying IDENT-CC [F] or other conditions on correspondence is too high; segments become less similar to escape the costly correspondence relationship (following Bennett 2013).

뜨 Unstable surface correspondence: two structures are similar enough to interact (CORR) but too uncomfortably similar to co-exist within a certain distance. Harmony and disharmony = repairs for resolving this conspiracy.
1.2. ABC as a theory of local interactions?

- ABC was originally devised for long distance consonant harmony patterns (Walker 2000; Hansson 2001; Rose and Walker 2004; Bennett 2013; a.o.), and has since been extended to vowel harmony (Sasa 2009; Rhodes 2012; cf. Jurgec 2013).
- But ABC formalism is not limited to long-distance effects and can actually insightfully handle local assimilatory effects (Wayment 2009; Shih 2013; Inkelas & Shih 2013; Lionnet 2013; Sylak-Glassman 2013).
- Correspondence is already scaled by proximity (Walker 2000, Hansson 2001, Rose & Walker 2004, et seq.). Examples of proximity-scaled CORR constraints (notation varies in the literature):

| No proximity restriction: | CORR-C:∞:C | ‘C’s must correspond’ |
| Syllable adjacency: | CORR-C:σ:C | ‘C’s in adjacent syllables must correspond’ |

- The logical end point of a proximity scale is strict adjacency:

| Strict string-adjacency: | CORR-C::C | ‘String-adjacent C’s must correspond’ |

Claim of this paper: the need to repair UNSTABLE CORRESPONDENCE underlies a wider variety of phenomena, including local assimilation (Wayment 2009), local dissimilation, deletion, epenthesis, metathesis. ABC is not limited to (long-distance) (dis)harmony.

Case study: NC clusters, well-known subject of phonological conspiracies.

2. UNSTABLE CORRESPONDENCE IN NC CLUSTERS

- Cross-linguistically, nasal+fricative (NS) and nasal+voiceless consonant (NC) clusters are dispreferred (e.g., Padgett 1994; Pater 1999/2004, Hayes 1999; respectively; see also Hyman 2001).
- NS and NC are prone to a number of phonological repairs:
 - deletion (e.g., Zoque /N-faha/ → [faha]; Padgett 1994)
 - epenthesis (e.g., Dutch /zwem-t/ → [zwępmt] ‘swims’; Warner 2002:8)
 - fusion (e.g., Indonesian /mɑN-pilih/ → [mamilih] ‘to choose, vote’; Pater 2004)
 - dissimilation (e.g., Polish /šansa/ → [šawsa]; Padgett 1994)
 - assimilation (e.g., Mandar /maN+tuNu/ → [mattun]; Pater 1999/2004)
- Previous accounts invoke NC-specific markedness constraints (e.g., NPA, *NC) that are arbitrarily specific to particular strings of segments (Padgett 1994; Pater 1999/2004)
- The view from ABC: repairs triggered by UNSTABLE CORRESPONDENCE within the cluster. NC-specific markedness constraints are not needed.
2.1. Mandar (Pater 1999/2004): N assimilates totally to following C

- Mandar nasals assimilate to following voiceless stops (2a). Nasals are tolerated before voiced stops (2b).

(2) a. /maN-tunu/ → [mattunu] ‘to burn’
 b. /maN-dunu/ → [mandunu] ‘to drink’

- Key insight: adjacent stops are sufficiently similar to interact (CORR-C::C [-cont]), and interacting stops must match in continuancy and voice (IDENT-CC [cont, voice]).
- Assimilation of a nasal to a following voiceless consonant satisfies both CORR-C::C [-cont] and IDENT-CC [cont, voice].

(3) /maN-tunu/ → [mattunu]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a. man₄₃tu,unu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Correspondence; no identity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
</tr>
<tr>
<td>b. man₄₃tu,unu</td>
<td></td>
<td>W1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No correspondence; identity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>c. mat₄₃tu,unu</td>
<td></td>
<td>W1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No correspondence; no identity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
</tr>
<tr>
<td>d. man₄₃tu,unu</td>
<td></td>
<td>W1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No correspondence; dissimilation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. maw₄₃tu,unu</td>
<td></td>
<td>W1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Note: only changes to C₁ are considered here (but see §3).

- A nasal + voiced consonant cluster, e.g. /maN-dundu/ → [mandundu], already satisfies IDENT-CC [cont, voice] and does not need to undergo gemination:

(4) /maN-dunu/ → [mandunu]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a. mad₄₃du,unu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>W1</td>
</tr>
<tr>
<td>Correspondence; no identity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. man₄₃du,unu</td>
<td></td>
<td>W1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No correspondence; identity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>W1</td>
</tr>
<tr>
<td>c. mad₄₃du,unu</td>
<td></td>
<td>W1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No correspondence; no identity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>W1</td>
</tr>
<tr>
<td>d. man₄₃du,unu</td>
<td></td>
<td>W1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No correspondence; dissimilation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>W1</td>
</tr>
<tr>
<td>e. maw₄₃du,unu</td>
<td></td>
<td>W1</td>
<td></td>
<td></td>
<td>W1</td>
</tr>
</tbody>
</table>
2.2. Polish (Padgett 1994): \(N\) dissimilates to glide before \(S\)

- Polish nasals assimilate in place to following stops (5a), but \textit{dissimilate} to nasal glides before fricatives (5b).

\[(5) \begin{align*}
\text{a. } pan \text{ bog} & \rightarrow [pambuk] \quad \text{‘lord god’} \\
\text{b. } szansa & \rightarrow [šaw̃sa] \quad \text{‘chance’}
\end{align*}\]

- Key insight: adjacent \([-\text{approx}]\) consonants are sufficiently similar to interact (\text{CORR-C::C[–approx]}), and interacting consonants must match in continuancy and voice (\text{IDENT-CC [cont, voice]}).
- Dissimilation of nasal to approximant (6e) evades \text{CORR-C::C[-approx]} and \text{IDENT-CC}:

\[(6) \begin{align*}
\text{szansa} & \rightarrow [šaw̃sa]
\end{align*}\]

\[
\begin{array}{|c|c|c|c|c|}
\hline
\text{ } & /šansa/ & \text{IDENT-CC [cont, place]} & \text{CORR-C::C [–approx]} & \text{IDENT-IO [nas]} & \text{IDENT-IO [cont]} \\
\hline
\text{Correspondence; identity} & \text{a. šas}_x\text{s}_y\text{a} & & & W1 & 1 \\
\text{Correspondence; no identity} & \text{b. šan}_x\text{s}_y\text{a} & W1 & & & \\
\text{No correspondence; no identity} & \text{c. šan}_x\text{s}_y\text{a} & & & W1 & \\
\text{Correspondence; dissimilation} & \text{d. šaw̃}_x\text{s}_y\text{a} & W1 & & & 1 \\
\text{No correspondence; dissimilation} & \text{e. šaw̃}_x\text{s}_y\text{a} & & & & 1 \\
\hline
\end{array}
\]

- NC clusters that already agree in \([-\text{cont}]\) do correspond and assimilate in place:

\[(7) \begin{align*}
\text{pan \text{ bog}} & \rightarrow [pambog]
\end{align*}\]

\[
\begin{array}{|c|c|c|c|c|}
\hline
\text{ } & /\text{pan bog}/ & \text{IDENT-CC [cont, place]} & \text{CORR-C::C [–approx]} & \text{IDENT-IO [nas]} & \text{IDENT-IO [cont]} \\
\hline
\text{Correspondence; identity} & \text{a. pam}_x\text{b}_y\text{og} & & & & \\
\text{Correspondence; no identity} & \text{b. pan}_x\text{b}_y\text{og} & W1 & & & \\
\text{No correspondence; no identity} & \text{c. pan}_x\text{b}_y\text{og} & & W1 & & \\
\text{Correspondence; dissimilation} & \text{d. paś}_x\text{b}_y\text{og} & W1 & & W1 & \\
\text{No correspondence; dissimilation} & \text{e. paś}_x\text{b}_y\text{og} & & W1 & & \\
\hline
\end{array}
\]
2.3. **Zoque (Padgett 1994: 485): N deletes before S**

- Zoque nasals assimilate in place before stops (8a) but delete before fricatives (8b).

(8) a. \textit{N-burru} \to \textit{[mburru]} ‘my burro’
 b. \textit{N-faha} \to \textit{[faha]} ‘my belt’

- Deletion is an extreme end point of dissimilation.
- Key insight: adjacent consonants are sufficiently similar to interact (\textsc{corr-c::c}), and interacting consonants must match in place and continuancy (\textsc{ident-cc [cont, place]})
- By deleting, the nasal evades \textsc{corr-c::c} and, therefore, \textsc{ident-cc [cont, place]}:

(9) \textit{N-faha} \to \textit{[faha]}

<table>
<thead>
<tr>
<th></th>
<th>Correspondence; identity</th>
<th>Correspondence; no identity</th>
<th>No correspondence; no identity</th>
<th>Deletion</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>m,x_f</td>
<td>aha</td>
<td>W1</td>
<td>L</td>
</tr>
<tr>
<td>b.</td>
<td>n,x_f</td>
<td>aha</td>
<td>W1</td>
<td>L</td>
</tr>
<tr>
<td>c.</td>
<td>n,x_f</td>
<td>baha</td>
<td>W1</td>
<td>L</td>
</tr>
<tr>
<td>d.</td>
<td>faha</td>
<td></td>
<td></td>
<td>L</td>
</tr>
</tbody>
</table>

- NC clusters that already agree in [-cont] do correspond and can assimilate in place:

(10) \textit{N-burru} \to \textit{[mburru]}

<table>
<thead>
<tr>
<th></th>
<th>Correspondence; identity</th>
<th>Correspondence; no identity</th>
<th>No correspondence; no identity</th>
<th>Deletion</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>m,x_b</td>
<td>urr</td>
<td></td>
<td>W1</td>
</tr>
<tr>
<td>b.</td>
<td>n,x_b</td>
<td>urr</td>
<td></td>
<td>W1</td>
</tr>
<tr>
<td>c.</td>
<td>n,x_b</td>
<td>urr</td>
<td></td>
<td>W1</td>
</tr>
<tr>
<td>d.</td>
<td>burru</td>
<td></td>
<td></td>
<td>W1</td>
</tr>
</tbody>
</table>

Nasal substitution or fusion, e.g. /N-burru/ \to [murr], is a variant on the deletion repair (e.g. Pater 2004); subtleties in Faith-Io differentiate deletion [burru] (8d) from fusion [murr].

3. **Typological Predictions (Briefly)**

3.1. **Directionality**

- The above tableaus consider only changes to C1, not C2, in unstable C1C2 correspondences.
- In the majority of scenarios, it is C1 which is affected:
 - Positional faithfulness (to onsets) can account for the stability of C2. On positional (e.g. onset-specific) faithfulness, see e.g. Lombardi 1999, Beckman 1997, Smith 2002.
 - Perceptual asymmetries motivate unfaithfulness of C1; see e.g. Steriade’s P-Map (2001).
• Sometimes C₂ is the one to change in NC clusters, by hardening, voicing, even devoicing. In such cases positional faithfulness is subjugated.

(11) Yao postnasal voicing (Hyman 2001:155): adjacent stops correspond and must match in voicing; assimilation occurs

/ku-N-péleka/ → ku:-m-béleka ‘to send me’
/ku-N-kwéela/ → ku:-ŋ-gwéela ‘to climb on me’

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Correspondence; faithful</td>
<td>a. ku:m₂p₂éleka</td>
<td>W₁</td>
<td></td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Correspondence; assimilation</td>
<td>b. ku:m₂b₂éleka</td>
<td></td>
<td>L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No correspondence; faithful</td>
<td>c. ku:n₃p₂éleka</td>
<td>W₁</td>
<td></td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>No correspondence; [/+cons] dissimilation</td>
<td>d. ku:péleka</td>
<td></td>
<td></td>
<td>W₁</td>
<td>L</td>
</tr>
</tbody>
</table>

3.2. *NT versus *ND

• *ND (= “no post-nasal voiced stops”) has been proposed as a parallel constraint to *NT (*NC) to account for post-nasal devoicing (Hyman 2001).

(12) Tswana postnasal devoicing (Hyman 2001)

/N-bón-á/ → m-pón-á ‘see me!’ cf. bón-á ‘see’
/N-dis-á/ → n-tís-á ‘watch me!’ cf. dis-á ‘watch’

• *NT and *ND are contradictory constraints = problematic for OT typology (Zsiga et al. 2006; Gouskova et al. 2011).

• An unstable correspondence-based approach does not need to appeal to a specific *ND constraint. ND effects, though rare, fall out of the system of correspondence constraints:

(13) Hierarchy of correspondence constraints based on nasal stop similarity (Walker 1998, 2000b; Hansson 2001; Rose & Walker 2004) (see also (1)):

\[
\begin{array}{c|c|c|c}
\text{CORR-N::N} & \text{CORR-N::D} & \text{CORR-N::T} \\
\text{Nasal stops} & \text{Stops that may differ in nasality} & \text{Stops that may differ in nasality and voice} \\
\end{array}
\]

• Postnasal devoicing: adjacent voiced stops (CORR-N::D) are an unstable similar correspondence set and must match in nasality/sonority (IDENT-CC[nas]). To avoid nasalization, voicing dissimilation occurs, preventing correspondence.
Tswana dissimilation: /N-bón-á/ → m-pón-á

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a. mₙᵐₓóná</td>
<td></td>
<td></td>
<td>W₁</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Correspondence; faithful</td>
<td>b. mₓbₓóná</td>
<td></td>
<td>W₁</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>No correspondence; faithful</td>
<td>c. mₓbₓóná</td>
<td></td>
<td>W₁</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>No correspondence; [voice] dissimilation</td>
<td>d. mₓpₓóná</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Ranking of CORR-N::T below input-output faithfulness renders it inert to alternation caused by IDENT-CC [nas]: that is, NT clusters are not sufficiently similar to be unstable.

4. ADVANTAGES OF ABC APPROACH TO LOCAL NC CONSPIRACIES

The UNSTABLE CORRESPONDENCE approach has two advantages over past approaches:

4.1. Advantage #1: Eliminate context-specific markedness constraints and representations.

Constraints:
- Context-specific markedness constraints (e.g., *NC₅, Pater 1999) tend to be somewhat ad hoc. In principle, there should be an entire constraint space of combinations between primitive elements (e.g., *NT, *ND, *NS, *NZ, etc.) (Hayes 1999).
- Under an ABC approach, not necessarily to stipulate contextual markedness. Burden of segment interaction borne by correspondence relationships, similarity, and locality.

Representations:
- Feature-geometric dependence of [place] and [continuant] (Padgett 1994, 1995) [problematizes place assimilation in NS clusters] (15)

(15) Root Root

| [⁺nas] Place | ← problematic assimilation produces nasal fricatives |

- Assimilation is blocked when it derives the ill-formed *[⁺nas, +cons, +cont], thus explaining why NS assimilation is rarer than NT (Padgett 1994: 489).
- Under an ABC approach, feature-geometric dependence is obviated by the similarity-based correspondence constraints of ABC.
4.2. **Advantage #2:** Formal analyses of local and long-distance interaction (harmony and disharmony) are formally parallel.

- Vowel and consonant assimilations can be modeled using the same formal mechanisms (Sasa 2009, Rhodes 2012 in ABC; Jurgec 2013 using licensed alignment).
- ABC can model local tone patterns across adjacent consonants, vowels, and subsegments (Shih 2013) and long-distance subsegmental correspondences (Inkelas and Shih 2013).
- Both local and long-distance assimilations have similarity bases (Wayment 2009; cf. Rose and Walker 2004).

(16) Prerequisite similarity features for parasitic harmony (culled from Rose and Walker 2004: 484–485; Wayment 2009: 61; a.o.) (not an exhaustive list).

<table>
<thead>
<tr>
<th>Features</th>
<th>Local assimilations</th>
<th>Long-distance harmony</th>
</tr>
</thead>
<tbody>
<tr>
<td>major consonant place</td>
<td>✓ Sudanese Arabic</td>
<td>✓ Ngbaka</td>
</tr>
<tr>
<td>vocalic place</td>
<td>✓ Turkish</td>
<td>✓ Yowlumne</td>
</tr>
<tr>
<td>[sonorant]</td>
<td>✓ Italian</td>
<td>✓ Malto ([-son])</td>
</tr>
<tr>
<td>[continuant]</td>
<td>✓ Sanskrit</td>
<td>✓ Kera</td>
</tr>
<tr>
<td>[voice]</td>
<td>✓ Castilian Spanish</td>
<td>✓ Kikongo</td>
</tr>
<tr>
<td>[color] / [height]</td>
<td>✓ Turkish</td>
<td>✓ Turkish</td>
</tr>
</tbody>
</table>

4.3. **Assimilation as repair for local and long-distance unstable correspondences**

(17) /l/ assimilates to an immediately following /r/ in Hungarian (Grimes 2010, section 3.4.9)

/bal-ra/[barra] ‘to the left’
/el-rejt/[errejt] ‘conceal’

(18) Assimilation as repair for long-distance liquid harmony in Bukusu

- /l/ assimilates across a vowel to a preceding /r/ in Bukusu (Hansson 2001:125; data from http://linguistics.berkeley.edu/CBOLD and Odden 1994). /-il/ = applicative suffix:

a. xam-il-a ‘milk for’
b. bir-ir-a ‘pass for’
te:x-el-a ‘pick/gather for’
ir-ir-a ‘die’ for
i:l-il-a ‘cook for’
kar-ir-a ‘twist’
(19) Assimilation as repair for local unstable correspondence among sibilants in Hungarian (Siptár & Törkenczy 2007: 188 ff, Kenesei et al. 1998).

a. /ʃ/ or /ʒ/ + /s/ \rightarrow [ss]

 ki/ʃ/-/s/oba \rightarrow ki[ss]oba ‘small room’
 Balá/ʒ/-/s/erint \rightarrow Balá[ss]erint ‘according to Blaise’

b. /ʃ/ or /ʒ/ + /z/ \rightarrow [zz]

 má/ʃ/-/z/ene \rightarrow má[zz]ene ‘different music’
 gará/ʒ/-/z/árás \rightarrow gára[zz]árás ‘garage closing’
 (Kenesei et al. 1998)

c. /s/ or /z/ + /ʃ/ \rightarrow [ʃʃ]

 egé/s/-/ʃ/ereg \rightarrow egé[ʃʃ]ereg ‘a whole army’
 ho/z/-/ʃ/ót \rightarrow ho[ʃʃ]ót ‘bring some salt’

d. /s/ or /z/ + /ʒ/ \rightarrow [ʒʒ]

 hú/s/-/ʒ/ák \rightarrow hú[ʒʒ]ák ‘twenty sacks’
 bené/z/-/ʒ/ófi \rightarrow bené[ʒʒ]ófi ‘Sophie drops in’

(20) Assimilation as repair for long-distance unstable correspondence among sibilants in many languages, e.g. Samala (=Ineseño Chumash; data from Hansson 2001, citing Applegate 1972).

 /k-su-ʃojin/ \rightarrow [kfʊʃojin] ‘I darken it’ (Hansson 2001:58-59)
 /s-api-tʃʰ-o-it/ \rightarrow [fapitʃʰolit] ‘I have had a stroke of good luck’
 /ha-s-xintila-wafʃ/ \rightarrow [haʃxintilawafʃ] ‘his former Indian name’
 /s-ʃʃ-tʃi-ʃep-us/ \rightarrow [sístiʃepus] ‘they (2) show him’

4.4. Deletion (=dissimilation) as repair for local, long-distance unstable correspondence

(21) Zoque (=§2.3): N deletes if it cannot assimilate to following C. CORR forces (local) correspondence; CC constraint requires place identity. Deletion evades both.

 a. /N-faha/ \rightarrow [faha] ‘my belt’
 /N-ʃapun/ \rightarrow [ʃapun] ‘my soap’

 b. /N + pama/ \rightarrow [mbama] ‘my clothing’
 /N + burru/ \rightarrow [mburr] ‘my burro’
Huave: [h] deletes from coda position following a syllable with another aspirate (example modified from Kim 2008: 81). CORR forces (long-distance) correspondence; CC-Edge requires that correspondents be in the same syllable. Deletion evades both.

a. /a-pah/ → [apa]h ‘S/he calls’
 /t-a-h-pah/ → [ta]hpa, *ta[hpa] ‘S/he was called’

b. /a-naihp/ → [ana]h[p] ‘S/he sells it’
 /a-h-nap/ → [ahnap] ‘It is sold’

5. CONCLUSION

- Local and long-distance interactions can be handled in one theory based on correspondence and similarity interactions. (contra autosegmental spreading vs. ABC: e.g., Rose and Walker 2004; Gallagher 2008; Bennett 2013; a.o.).
- Using one formal mechanism highlights empirical parallels: similarity bias in segments participating in both local and long-distance correspondences (e.g., Wayment 2009).
- Our proposal: unstable correspondence between segments drives the same repairs for local and long-distance harmony and disharmony patterns.
 → Segments that are similar enough to interact but too uncomfortably similar to co-exist within a certain distance will result in repairs of assimilation and dissimilation.

- Still an open question: what is the extent of similarities and differences between local and long-distance attraction of segments, esp. if local and non-local interactions arise from different functional sources (local = co-articulation (Hayes 1999); long-distance = speech planning (Hansson 2001))?
 → Answer to this should illuminate how formally parallel local and non-local (dis)harmony phenomena should be.

References

Gouskova, Maria; Elizabeth Zsiga; and One Tlale Boyer. 2011. Grounded Constraints and the Consonants of Setswana. Lingua 121: 2120–2152.

Shih, Stephanie S. 2013 (under review). Consonant-tone interaction as Agreement by Correspondence. Ms. Stanford University and University of California, Berkeley.

