Instructor
Paul P. Maglio
Senior Manager, Service Systems Research, IBM Almaden Research Center
Associate Adjunct Professor, Cognitive Science, UC Merced

e-mail: pmaglio@ucmerced.edu
tel: 408-927-2857

Lecture
Monday, 6 – 9 PM
Room COB 120

Office hrs
By appointment

UCMCROPS
F07-MGMT150COGS152 LEC

Grades
Three short papers 10 points each
Class participation 10 points
Final paper 60 points

Assignments

Sept 10
One-page paper due: Describe a specific business service you use, explaining how it relates to Teboul’s (or other) definition of service

Oct 8
One-page paper due: Describe a potential topic for your final paper

Nov 5
Two-page paper due: Explain the topic of your final paper

Dec 10
Final paper due: Maximum length, 10 pages

Rules
Papers must be double-spaced with 1-inch margins on all sides, and formatted in a legible font (such as Times Roman) with font-size 12. Papers must have a title, your name must be at the top of each page, and each page must be numbered. All papers must include references formatted in a standard style, either following The Chicago Manual of Style (15th edition) or the Publication Manual of the American Psychological Association (5th Edition). All papers must be clearly written (see Strunk and White’s classic, Elements of Style), and must be proofread so they contain minimal typos and the like.
What will you learn in this course?

The US economy – and economies of all industrialized nations – are made primarily of service jobs (about 80% of jobs in the US are service jobs), and the gross domestic product comes primarily from service (more than 70% in the US). Experts suggest that these numbers will only increase over time. So chances are that when you get out of school, you are going to be working in a service job or in the service sector.

In this course, you will learn about service. You will learn what service is, why it is different from other sectors and other jobs, and why it is important. You will learn about problems in service, such as measuring performance, increasing quality, and creating innovation. You will learn how some have recently begun to study service from a variety of different perspectives – including social sciences, cognitive science, management, engineering, and others – to address these problems. You will learn how interdisciplinary research might be effective in studying and understanding service. In the end, you will be able to have an informed and intelligent conversation about the nature of service, how to think about measurement in service, and how to increase innovation in service. And you will be (at least a little more) ready for the workforce you are about to enter.

So what is service science, anyway?

Service science is the study of service, which can be broadly defined as actions that one takes on behalf of another (such as washing a car or managing web servers). But there really is no such thing as service science today – there is no single accepted, integrated, interdisciplinary scientific study of the service economy or of service jobs. Service science is more like a movement whose goal is to focus attention on service-related problems. In service science, the basic unit of analysis is the service system, a configuration of people, technologies, and other resources that interact with other service systems to create mutual value. Many systems can be viewed as service systems, including families, cities, and companies, among many others. Just as computer scientists work with formal models of algorithms and computation, someday service scientists will work with formal models of service systems.

More precisely, *service* is the application of resources (including competences, skills, and knowledge) to make changes that have value for another. For instance, in information technology (IT) outsourcing services, a service provider operates the computing infrastructure for a service client. The provider augments the client’s capabilities, taking on responsibility for monthly service-level agreements and year-over-year productivity improvements. The formal representation and modeling of service systems is nascent, largely because of the complexity of modeling people, their knowledge, activities, and intentions. Service system complexity is a function of the number and variety of people, technologies, and organizations linked in the value creation networks, such as professional reputation systems of a single kind of knowledge worker or profession, work systems composed of multiple types of knowledge workers, enterprise systems, industrial systems, national systems, and even the global service system. Knowledge workers depend on their knowledge, tools, and social-organizational networks to solve problems, be productive, continually develop, and generate and capture value. Service science must combine formal models with models of human behavior to understand service systems.
Readings

Book (available at the UC Merced Bookstore)

Book Chapters (available through University Readers)

Articles (available through UCMCROPS)

Glushko, B. & Tabas, L. (in press). Bridging the front stage and back stage in service system design. To appear in *HICSS 2008*.

Optional Readings (available through UCMCROPS)

Smith, A. (1776). The wealth of nations. (Chapter 1). Available at http://www.econlib.org/LIBRARY/Smith/smWN.html
Syllabus

Aug 27 Lecture 1: Service Science

Sept 3 *No Lecture: Labor Day*

Sept 10 Lecture 2: Service Systems
Reading: Teboul (2006) Chapters 1 – 4
 Spohrer et al (2007)

First Assignment Due

Sept 17 Lecture 3: Service Design
Reading: Teboul (2006) Chapters 5 – 6
 Fitzsimmons & Fitzsimmons (2005a, 2005b)

Sept 24 Lecture 4: Service Work I
Reading: Hutchins (1995)
 Maglio, Kandogan, & Haber (2007)

Oct 1 Lecture 5: Service Work II
Guest: **Jeanette Blomberg, IBM Almaden Research Center**
Reading: Butler et al (1997)
 Johnson et al (2005)
 Schultze & Bhappu (2005)

Oct 8 Lecture 6: Service Marketing
Guest: **Steve Vargo, University of Hawaii**
Reading: Lovelock & Wirtz (2007a, 2007b)
Optional: Rust & Chung (2006)

Second Assignment Due

Oct 15 Lecture 7: Service Information
Guest: **Ravi Nemana, UC Berkeley**
Reading: Heskett & Hallowell (2007)
 Spangler & Kreulen (2007)

Oct 22 Lecture 8: Service Computing
Guest: **Bob Glushko, UC Berkeley**
Reading: Glushko & McGrath (2005)
 Glushko & Tabas (in press)
Optional: Cherbakov et al (2005)
Oct 29 Lecture 9: Final Paper Discussion

Nov 5 Lecture 10: Service Design & Engineering
Guest: Doug Morse, Oracle Corporation
Reading: Lovelock & Wirtz (2007c, 2007d)
Third Assignment Due

Nov 12 No Lecture: Veterans Day

Nov 19 Lecture 12: Service Supply Chain
Guest: Hans Bjornsson, UC Merced
Reading: Fitzsimmons & Fitzsimmons (2005c, 2005d, 2005e)

Nov 26 Lecture 13: Service Economics
Guest: Todd Neumann, UC Merced
Optional: Arthur (1999)
 Coase (1937)
 Smith (1776)

Dec 3 Lecture 14: Service Value-Creation
Reading: Norman & Ramirez (1993)
 Palmisano (2006)
 Karmarkar (2004)
 Mann (2003)

Dec 10 Lecture 15: Service Innovation and Service Science
Reading: Maglio et al (2006)
 Moon & Quelch (2007)
Optional: Frei (2006)
Final Paper Due